Search results

Search for "cobalt doping" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • . Keywords: cobalt doping; collective dynamics; ferrite nanoparticles; interparticle interactions; magnetic properties; Introduction A strong scientific interest has driven the fundamental research on magnetic nanoparticles in the last decades [1][2][3][4], with interest constantly fed by their wide range
  • different magnetic anisotropy opens interesting perspectives for applications in biomedical fields (e.g., MRI, drug delivery, hyperthermia) [20][21] and energy harvesting. Experimental Synthesis Several samples consisting of manganese ferrite nanoparticles with different cobalt doping, i.e., Mn1−xCoxFe2O4
  • control over particle size. Nevertheless, our study evidences that a significant change in the magnetic properties occurs in the concentration range between 0 and 25% of cobalt, while subtler variations occur due to incremental additions of Co in substitution of Mn. Conclusion The effect of cobalt doping
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019
Other Beilstein-Institut Open Science Activities